

In this presentation

- Why should we worry about static electricity?
- Why do fires and explosions happen?
- · Understanding static electricity
- Examples of electrostatic charge build-up in industrial processes
- · Key points

Fire when refuelling car

Fortunately this is unlikely to happen in the UK!

> 2/12/2004 20:20:35 ump 1 & 2

© Electrostatic Solutions Ltd 2 February 2

The flammable atmosphere

- · The fuel could be
 - Vapours

© Electrostatic Solutions Ltd 2 February 2

- Dusts
- Droplets of liquid (mist)
- A mixture of vapours and other materials
- The fuel is usually essential to operations
- In some cases the atmosphere may be inerted e.g. with nitrogen or CO2

Minimum Ignition Energy (MIE)

- To ignite a flammable mixtures the ESD energy must exceed the material Minimum Ignition Energy (MIE)
- Different flammable mixtures have different MIE
- MIEs of gases and hydrocarbon vapours in air are often around 0.1- 0.3 mJ
- Some vapour MIEs can be as low as 0.02 mJ
 - hydrogen-air
 - ethylene-air
 - oxygenated mixtures

Ltd 2 Februa

Dust clouds can have MIE from < 1mJ upwards
– MIE varies with particle sizes and other factors

Different types of ESD have different ability to ignite materials

ESD type	Where it occurs	Will ignite	
Spark	Between two conductors	Gas mixtures and dusts	
Propagating brush	From insulator backed by a conductor	Gas mixtures and dusts	
Brush	From insulators	Gas mixtures	
Cone	Highly charged insulating powder cones in silos	Gas mixtures and low MIE dusts	
Corona	Sharp edges on charged conductors	Not usually incendive	
© Electrostatic Solutions Line February 2000 10 www.electrostatics.net			

Where does electrostatic charge come from?

12

- Every material is made up of charge
 Negative electrons
 - Positive atomic nuclei

Solutions Ltd. 2 February 2

- These charges are normally present in balance, and their effects cancel
 - If there is a local imbalance we may see static electricity effects
- charge transferred between materials in contact
 - electrons flow from one material to the other
- materials separate and take equal and opposite polarity (positive and negative) charge

+	—
+	—
+	—
+	—
+	—
+	—
+	_

Conductors and grounding

- Conducting materials such as metal allow static electricity to move around
- We can "ground" or "earth" a conductor by connecting it to electrical earth by way of a wire
- The human body is a conductor and may need to be grounded

static Solutions Ltd 2 February 2

Insulators prevent static charge moving away

- · Insulators cannot conduct static electricity away
- Insulators encourage static charge to build-up!
- Grounding an insulator does not work as the charge cannot move from the insulator
- Insulators can prevent charge moving from an isolated conductor
- Use of insulators in a hazard Zone is often restricted as they may be the source of ESD

Demonstrations

- · Charging of plastics
- · Charging of metal plate without touching it
- The effect of grounding the conductor
- · Voltages on people
- The effect of grounding the person

Examples of electrostatic charge build-up in industrial processes

Contact charging in processes

- Charges are separated wherever two materials are in contact
 - Highly insulating liquids or solids encourage charge build-up
- · In pipes, containers or process equipment

10

- Poured and blown powder particles can give high charge levels
- A person walking or wiping a plastic equipment surface

Electrostatic Solutions Ltd 2 February 2

Some processes generate high charge levels

- Seiving
- Pouring
- · Scroll feed transfer
- Grinding
- Micronising
- Pneumatic conveying

ions Ltd. 2 February 20

Triboelectric powder coating

Avoiding ignition risk

- Identify and control zones of flammable atmosphere
 - Inerting can be used to eliminate flammable atmosphere if necessary
- Where flammable atmosphere is possible, eliminate ESD sources
 - In the case of dusts the Minimum Ignition Energy (MIE) will have to be assessed to determine the level of risk
- · If in doubt take specialist advice

© Electrostatic Solutions Ltd 2 Februa

Assess use of insulators

- Avoid insulators that could charge up dangerously or cause conductors to become isolated
 - · Plastic equipment and packaging
 - Rubber

rostatic Solutions Lto & February 2

- · Epoxy floors
- Charged insulators give brush discharges that could ignite flammable vapours
 - Only small areas of insulating surfaces are allowed in Zone 0 and 1

Specific guidance for many industrial situations is given in CLC/TR 50404:2003

Ground any conductors including people Avoid having isolated metal parts that could be

- charged by induction or triboelectrification
- Ground all conductors of any significant size - People are large conductors and must often be grounded through shoes and flooring!
- Charged conductors give sparks that may ignite vapour or dust clouds
- Charged insulators Induced voltages in isolated metal parts, causing sparks

Specific guidance for many industrial situations is given in CLC/TR 50404:2003

Key points (1)

- For ignition of a flammable materials 3 things must be present
 - Fuel

© Electrostatic Solutions Ltd 2 February 2

- Air (oxygen)

Solutions Lto 2 February 20

- The ignition source (ESD)
- The energy of the ESD must be greater than the material Minimum Ignition Energy
- Different types of ESD have different ability to ignite vapours or dusts

Key points (2)

- All materials can generate static electric charges
- Static builds up if it can't dissipate fast enough
- Charge on insulating materials cannot move and tends to build up – insulators cannot be grounded
- Charges on conductors can be released safely to earth by grounding

© Electrostatic Solutions Ltd & February 20

tic Solutions Ltd 2 Februa

Key points (3)

- · The main ESD control methods are
 - Avoid using insulators that could charge up and cause ESD
 - Be sure all conductors within a hazard Zone are grounded
 - Grounding people through conductive or dissipative footwear and flooring

Specific guidance for many industrial situations is given in CLC/TR 50404:2003

References and further reading

CENELEC. *Electrostatics* – Code of practice for the avoidance of hazards due to static electricity. CLC/TR 50404:2003

CEN. Non-Electrical equipment for potentially explosive atmospheres – Part 1: Basic method and requirements. BS EN 13463-1:2001

CENELEC. Electrical apparatus for explosive gas atmospheres. Part 0: General requirements. BS EN60079-0:2004